1. (15 pts) Prove 0 -stability of the trapezoidal method.
2. (20 pts) Compute the stability function of the Runge-Kutta method with the following Butcher tableau

0	0	0	0
1	1	0	0
1	0	0	1
	$\frac{1}{6}$	$\frac{4}{6}$	$\frac{1}{6}$

3. (15 pts) Consider the multistep method

$$
11 y_{n+3}+27 y_{n+2}-27 y_{n+1}-11 y_{n}=3 h\left(f_{n+3}+9 f_{n+2}+9 f_{n+1}+f_{n}\right) .
$$

Is this method consistent? Is this method 0-stable?
4. (25 pts) Consider the shooting method for the BVP

$$
y^{\prime \prime}(t)=y(t)^{2} \sin \left(t+y^{\prime}(t)\right), \quad y(0) y^{\prime}(0)=1, \quad y(1)+y^{\prime}(1)=6 .
$$

Show how to set up the Newton method and state how to obtain the value of
a) a function whose zero needs to be found
b) the derivative of the function.
5. (25 pts) Consider the BVP

$$
u^{\prime \prime \prime \prime}=R\left(u^{\prime} u^{\prime \prime}-u u^{\prime \prime \prime}\right), \quad u(0)=u^{\prime}(0)=0, \quad u(1)=1, u^{\prime}(1)=0 .
$$

Convert it to a system of first order equation $y^{\prime}=f(y)$. To solve it by the finite difference method using midpoint method one obtains

$$
y_{k}=y_{k-1}+h f\left(\frac{y_{k}+y_{k-1}}{2}\right), \quad k=1, \ldots, N, h=\frac{1}{N} .
$$

Let z be an approximation y and assume $w=y-z$ is small. Linearization of f gives

$$
w_{k}=w_{k-1}+\frac{h}{2} A_{k}\left(w_{k}+w_{k-1}\right)-q_{k} .
$$

Provide an expression for A in terms of z.

